3.859 \(\int \frac{1}{x^2 \left (a+b x^2+c x^4\right )} \, dx\)

Optimal. Leaf size=174 \[ -\frac{\sqrt{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{1}{a x} \]

[Out]

-(1/(a*x)) - (Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[
b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(1 -
 b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(
Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi [A]  time = 0.495297, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167 \[ -\frac{\sqrt{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{1}{a x} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^2*(a + b*x^2 + c*x^4)),x]

[Out]

-(1/(a*x)) - (Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[
b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(1 -
 b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(
Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 40.6179, size = 177, normalized size = 1.02 \[ \frac{\sqrt{2} \sqrt{c} \left (b - \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt{b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} - \frac{\sqrt{2} \sqrt{c} \left (b + \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt{b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} - \frac{1}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**2/(c*x**4+b*x**2+a),x)

[Out]

sqrt(2)*sqrt(c)*(b - sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b + sqrt(-
4*a*c + b**2)))/(2*a*sqrt(b + sqrt(-4*a*c + b**2))*sqrt(-4*a*c + b**2)) - sqrt(2
)*sqrt(c)*(b + sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b - sqrt(-4*a*c
+ b**2)))/(2*a*sqrt(b - sqrt(-4*a*c + b**2))*sqrt(-4*a*c + b**2)) - 1/(a*x)

_______________________________________________________________________________________

Mathematica [A]  time = 0.765641, size = 191, normalized size = 1.1 \[ -\frac{\frac{\sqrt{2} \sqrt{c} \left (\sqrt{b^2-4 a c}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \sqrt{c} \left (\sqrt{b^2-4 a c}-b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{2}{x}}{2 a} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^2*(a + b*x^2 + c*x^4)),x]

[Out]

-(2/x + (Sqrt[2]*Sqrt[c]*(b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqr
t[2]*Sqrt[c]*(-b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b
^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*a)

_______________________________________________________________________________________

Maple [A]  time = 0.025, size = 232, normalized size = 1.3 \[ -{\frac{c\sqrt{2}}{2\,a}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}b}{2\,a}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}}{2\,a}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}b}{2\,a}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{1}{ax}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^2/(c*x^4+b*x^2+a),x)

[Out]

-1/2*c/a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c
+b^2)^(1/2))*c)^(1/2))+1/2*c/a/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2)
)*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b+1/2*c/a*2^(1/2
)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))
*c)^(1/2))+1/2*c/a/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*
arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b-1/a/x

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ -\frac{\int \frac{c x^{2} + b}{c x^{4} + b x^{2} + a}\,{d x}}{a} - \frac{1}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^2),x, algorithm="maxima")

[Out]

-integrate((c*x^2 + b)/(c*x^4 + b*x^2 + a), x)/a - 1/(a*x)

_______________________________________________________________________________________

Fricas [A]  time = 0.275968, size = 1507, normalized size = 8.66 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^2),x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b
^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-2*(b^2*c^2 - a*c
^3)*x + sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^3*b^4 - 6*a^4*b^2*c + 8*a^
5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b
*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/
(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)
*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log
(-2*(b^2*c^2 - a*c^3)*x - sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^3*b^4 -
6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*
sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6
*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) + sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c - (
a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b
^2 - 4*a^4*c))*log(-2*(b^2*c^2 - a*c^3)*x + sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b
*c^2 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6
*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2
*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x*sqrt(-
(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 -
 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-2*(b^2*c^2 - a*c^3)*x - sqrt(1/2)*(b^5 - 5
*a*b^3*c + 4*a^2*b*c^2 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2
*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*s
qrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) + 2)
/(a*x)

_______________________________________________________________________________________

Sympy [A]  time = 6.19716, size = 148, normalized size = 0.85 \[ \operatorname{RootSum}{\left (t^{4} \left (256 a^{5} c^{2} - 128 a^{4} b^{2} c + 16 a^{3} b^{4}\right ) + t^{2} \left (48 a^{2} b c^{2} - 28 a b^{3} c + 4 b^{5}\right ) + c^{3}, \left ( t \mapsto t \log{\left (x + \frac{- 64 t^{3} a^{5} c^{2} + 48 t^{3} a^{4} b^{2} c - 8 t^{3} a^{3} b^{4} - 10 t a^{2} b c^{2} + 10 t a b^{3} c - 2 t b^{5}}{a c^{3} - b^{2} c^{2}} \right )} \right )\right )} - \frac{1}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**2/(c*x**4+b*x**2+a),x)

[Out]

RootSum(_t**4*(256*a**5*c**2 - 128*a**4*b**2*c + 16*a**3*b**4) + _t**2*(48*a**2*
b*c**2 - 28*a*b**3*c + 4*b**5) + c**3, Lambda(_t, _t*log(x + (-64*_t**3*a**5*c**
2 + 48*_t**3*a**4*b**2*c - 8*_t**3*a**3*b**4 - 10*_t*a**2*b*c**2 + 10*_t*a*b**3*
c - 2*_t*b**5)/(a*c**3 - b**2*c**2)))) - 1/(a*x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.795577, size = 1, normalized size = 0.01 \[ \mathit{Done} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^2),x, algorithm="giac")

[Out]

Done